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ABSTRACT

We consider a special flow S* over a shift in the space of sequences (X, u)
constructed using a continuous f with

@«

She s [f0-fO)] <.

n=0 x.y:x =y li|Sn

We formulate a condition for x such that the K-flow §* is a B-flow.

1.

A geometric idea of Ornstein and Weiss [8] turns out to be applicable to tran-
sitive Anosov flows of class C? on compact Riemannian manifolds, relative to a
wide class of K-measures which Sinai considered in [11] and called Gibbs measures
(see also [3]). This class includes the so-called smooth measures, which induce
conditional measures equivalent to normalized Riemannian volume on the
elements of a measurable partition consisting of subsets of contracting (or ex-
panding) leaves. For geodesic flows on compact manifolds of negative curvature,
these measures coincide with invariant Riemannian volume. Sinai’s construction
of Gibbs measures [11] made essential use of a special representation of an
Anosov flow {T'} on M, obtained with the aid of a Markov partition (see [10],
[2], [9]). This partition determines a matrix IT = {m;;}, m;; = 0,1, of order r,
with the property that for some s > 0 the elements of the matrix I1° are positive.
Using the matrix I1, one constructs a space X = X < {1,2,--,r}* of sequences

x = {x}2 _ws Maoxis, = |, wWith metric

t A note on the paper Geodesic flows are Bernoullian by D. Ornstein and B. Weiss.
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. 0 x=x;
d(x’,x") = X 27We(x] x7), e(x}, x§’)={
i 1 x# x{.
X is compact.
In X one can define the shift automorphism ¢: (¢x); = x;_,. The Markov
partition enables one to define: (i) a positive continuous function f(x) on X

satisfying a Holder condition; (ii) a special flow S' = (¢, f) in the space
W= (Xf)={xy): xeX, 0 <y <f(x), (xf(x)) = (¢x,0)}

with the direct product topology, so that for ¢ < inf .. xf(x)

(x,y + 1), t<f(x)—-vy

(ox,t+y—f(x), t2fx)—y.

S* is uniquely defined for all other ¢ by the condition that it be a one-parameter

S'(x,y) ={

group of transformations; (iii) a continuous mapping ¥: W —M such that
YS* = T*. If we now let v be an S’-invariant Borel measure in W such that
fails to be bijective on a set of v-measure zero, then the flows S* in (W,v) and T
in (M, y*v) are isomorphic (for any Borel set A = M, ¥ * v(4) = v(y ~14)).

This was the method used by Sinai in [11] to construct invariant Gibbs K-
measures for transitive Anosov flows of class C2, carrying out the actual construc-
tion for special flows S* in W. Sinai’s Gibbs measure v in W induces on X a
¢-invariant Borel K-measure pu(dv = (dpu x dt) f=1, f = [;f(x)dp), possess-
ing the property:

(1) lim l"'(xllxo’x-ls“'ax—n) = H(x1|x0’x—1"") 2a>0, for every

n—> o0
sequence {x;}2 .
(2) Forallx={%}2,,%={X} e, Hi=%|i]|=n,
and certain constants C, x > 0,0 < p < 1, we have
® 5D 1] < cpm
| 1(x4/x)

Let « denote the partition of X into sets xo=1i, i = 1,2,---,r,and af = V/}_, ¢*a.
By the construction of the space X = X, we can definefor Aexand %, % € o°. oA
a bijective mapping n: X onto x such that x € ¥ and #(x) = z e X lie in the same
atom of the partition o , that is, {z,}%,, = Xand z; = x;, i 2 0. It clearly follows
from (3) that if %, X = A€a”, then for any measurable C < %, y(C] >0
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#(nC|x)

@ W(CID

= 1] <y

where y(n) = 0 as n - .

When « is a Markov partition for an Anosov diffeomorphism, the atoms of «°
are subsets of contracting leaves, while the elements of «f are subsets of
expanding leaves (see [10], [9]). Then the mapping 7 (sometimes called the
canonical mapping) maps one contracting subset onto another via transversal
intersection with an expanding subset. For an algebraic automorphism of a torus
with Haar measure u and a geodesic flow on a manifold of negative curvature
with invariant Riemannian volume, the mapping 7 satisfies condition (4) (see [1]).

The geometric idea of Ornstein and Weiss, applied to these cases [8], is essen-
tially based on condition (4).

Let us say that a function f continuous on X belongs to class ¥(2) if, for
all x,x'eX, x, = x{ for |i| £ n,

&= fG:)] < B, E Bln)<co (in - Bn) < oo).

Our main result (Theorems 3.1, 4.3) is that if condition (4) holds in (X, p)
(or even a weaker condition 2.1, see below, which does not require that X have
a matrix stucture), 0 < fe ¥’ and for fixed ¢, S* is a K-automorphism in (W, v),
then S*is isomorphic to a B-shift. In particular, we obtain the following theorems.

TuEOREM 1.1  Transitive Anosov flows of class C? with Gibbs measures are
B-flows.

THEOREM 1.2. If (X,pu,¢) is a Markov chain, 0 < fe Y, and for fixed t,
St is a K-automorphism in (W, v), then S is isomorphic to a B-shift.

2.

Here we shall study condition (4). If P is a property that holds for all atoms of
a partition o, with the possible exception of a set of atoms whose union has
measure less than ¢, we shall say that P holds for e-almost every atom of «, or
for g-almost every atom A of a.

We now formulate a weaker version of condition (4). Let (X, p) be a ¢-invariant
subset of {1, 2, r}%

ConpITION 2.1. For any g > 0, there exists a set P of atoms of a®_,
u(P) > 1 — g, aset Q of atoms of gy, u(Q) > 1 — ¢, and a number N = N(g) > 0,
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such that for all x®yea®y, all £,x e P N x°%, and any set 4 = Q of atoms of
oy, we have: p(A| %) > 0iff u(4|%x) > 0 and

_uA[x)
wA/x)

< &

IfX =X thendANni#JifAnx#Fand A Nx = n(d N X).

Henceforth, the notation %€ x® y will imply that x% y is a set of atoms of a2 .
Moreover, it will be clear from the context whether a set C is to be considered as a
set of atoms of some partition or as a subset of the space X.

ProrosITION 2.2. If ¢ is a K-automorphism in (X, u) and Condition 2.1
holds, then o is a weak Bernoulli partition.

o is said to be a weak Bernoulli partition if for any &¢ > 0 there exists
ny = ny(€) > 0 such that for all n’ Z n 2 ny, all m > 0 and e-almost every
atom Bea?®,,

©) T |m4/B) - )| <e.

Ae a
Proor. Let Condition 2.1 hold for ¢ > 0, P, Q and N. Since ¢ is a K-auto-
morphism and a®y is finite, there exists k, = ko(€) such that for allk’ = k = k,,
¢-almost every atom A e o and all x%yea®y, u(x%y) > 0,

H(XEN/A) _ ll <.
#(x‘-)-N)

That is,

#(A/x2 y)
(6) ’—ﬂ(A_)_ - 1| <&

SetA =AU A", A =ANQ, A" = A NQ. Then by (6),

@) |i(A") — (4’ [x2 )| < eu(A) + p(4") + p(A"[x2y).
Further

(A [x2y) = w(A'[x2y O P) - w(Px2y) + u(A'[x2y O P) - u(P[x2y)

Wy P = [ g )

_NU
By Condition 2.1, for any Z€x._y N P, we have p(4’|%) > 0iff p(4'|x2yNP) >0
and
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wAd'[x%y O P)
u(A’| %)
Since u(P) > 1 —¢& and u(Q) > 1 — ¢, there exists a set R of atoms of af,
u(R) > 1 — 2¢%, such that for all x®y e R:

—li<s.

p(Px2y) > 1 —&* and u(Q/x%y) > 1 — ¢t
Then, for £ex®y NP, x°yeR,
| (A’ [x%y) — w(A'[D)| < 262u(A"[%) + etu(A"[x2y O P).

It then follows from (7) that for €S = R N P, u(S) > 1 — 3¢t and xe x)eR,
(A" [%)— p(A")] < 263 (A" [%) + (A’ [x2y O P) + p(A") + eu(A) + p(4"]x2y).
This is true for all k' = k = ko and e-almost every atom Aeaf . Hence, for

xe€8s,
Ek,l w(AIR) — p(4)| < 176,

Aea
k

Since ¢ is a K-automorphism, there exists m, = my(e) > 0 such that for all
m’ = m = m, and e-almost every atom BeaZ};.,

MSIB) _ i
FONER

But u(A4/B) = u(4/B N S) u(S/B) + u(A/B N §) u(S/B) and

s[#(A/i) — w(A)] dpp o5(%)

Bnr

Z |u4iB) —pu)| = I JusiB) |

Aeca
3

+ w(A) u(S/B) — u(4) + w(A/B N S)u(S/B)|

< usiB)| z,

X eBnS Aeak

WA[%) — u(A) I] dpipns(X)

+ 8¢t < 25¢%.
This clearly implies (5), if we set ny = ko(€%/17) + my(%/8). |

Remark. The proof remains valid without change if Condition 2.1 is
weakened as follows: for any collection {4;} of sets 4, = Q of atoms of «f,
ANA; =, 30 #)),

(®) T | WAi%) ~ w45 < e.

Since « is a generating partition, we obtain the following theorem from [7].
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THEOREM 2.3. If Condition (8) holds, the K-shift ¢ is Bernoullian. In
particular, transitive Anosov diffeomorphisms are Bernoullian relative to
Gibbs measures (see [4], [11]).

3.
In this section we prove Theorem 3.1.

THEOREM 3.1. If Condition 2.1 holds in (X,u), 0 < f* £ fe ¥ is bounded
and constant on atoms of af and for fixed t, S* is a K-automorphism in (W,v),
then S* is a B-shift.

Our proof will employ the concept of very weak Bernoulli (VWB) partitions,
defined in [7], [ 8].

Let (W, B,v) be a measurable space, S an invertible measure-preserving trans-
formation, and y a finite partition. The following two theorems may be found

in [7], {6}, ((8]-

THEOREM A. If y is VWB then (W,V ©,S"y,v,8) is a B-shift.
Here VZ,S"% denotes the smallest g-algebra with respect to which all the
S’y are measurable.

THEOREM B. If Ay = A, € --- is an increasing sequence of S-invariant
o-algebras, V\”A; = B, and for each i (W, A;,v,S) is a B-shift, then (W, B, v,S) is
a B-shift.

In order to formulate sufficient conditions for a VWB partition, we need the
following concepts. Let (X,, m;) and (X,, m;) be two measurable spaces,
A mapping ©: X; — X, is said to be ¢ measure preserving if thereisa set E, < X,
my(E,) = g, such that forall4 « X, — E;, m;(4) > 0,

| mo(@4)/m,(4) — 1] < e.

Let {«;}T be a sequence of partitions in X. Then the {«;}]-name of x € X is the
sequence J; = I(x) determined by x € A, a; = {4{, 49, 49}

Let 7 be a finite partition in (W, B,v,S) and y? = VZ_,S%. We shall consider
A€y, as a measurable space with g-algebra B/4 and normalized conditional
measure v | A, and also the sequences of partitions {S"iy}'{' in (W, B, v) with name-
function I(w) and {S~%|A}T in (4, B| A, v| A) with name-function my). Let e
be defined on the integers by e(j) = 1 for j % 0 and ¢(0) = 0.

The following theorem is proved in [8].
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THEOREM C.  Suppose that for any € > O there exists ny = ny(e) > 0 such
that for all n’ 2 n 2 no, e-almost every atom A€y’ and any m 2 1 one can
construct an & measure-preserving-mapping 0: (W, B,v) onto (A,Bl A,vl A) such
that

1 m
— X e(l(w—-m(Bw) S, weW —E
m ;=4
®
WE) Z e
Then y is VWB.

Since f is constant on atoms of ag there exists a partition & of W into atoms
{$°x5 0 = y <f(x5), x5' €05’}

Let x”,ea”, and 2/n < y + 1/n S inf, ,» f(x). Define an n-cube in W as a
set

y+1i/n
w,= U S%.,.
t=y-1/n

Let { be the partition of w, into sets {C' = S'x2, te[y — 1/n, y + 1/n],
X", < x,} and g the partition of the same set into sets {711, S'%" ,,
X", < x™}. We write dw, = §7*'/"x" U §*7Y"x" . It is convenient to in-
troduce the projection z: W— X, defined by n(w) = x for w = (x,), 0 < y < f(x).

Now suppose that Condition 2.1 holds for ¢ > 0, P,Q,N(¢) > 0, and let
n 2 N(e). Set P, = ¢"P, @, = 6”0, P = Uy e, U/E3S™, Q1 = Uy 0, U5 S™x.
P and Q are, of course, treated here as subsets of X. It is clear that v(P;) = 1 — ¢
and (Q;) = 1 — t¢, where © = sup,.x f(x)/ f. The set P, consists of atoms of
a™ ,, and since f is constant on atoms of «g”it follows that Q, consists of atoms
of &

Let w, be some n-cube in (W, v) and g’ the set of all atoms G of g ] w, such that
G c P,. Then Condition 2.1 implies the following.

PROPOSITION 3.2. For any ¢ > 0, n = N(e), any set A = Q, of atoms of
and any G, Geg’, we have: W(A4|G) > 0 iff v(4] G) > 0, and

(10) IV(A/{) _1| <e.
WA

Proor. By the definition of v,

v(A|G) = U;yﬂ/n u(r(AN Cé)/)?.’!m)dt] nj2

—~1/n

where %%, = nG and C{e{|G.
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A similar expression is valid for G, Xlo = G and (=,"; = Cl G.Now, if A'isa set
of atoms C,€ 4 such that C, N §'x”, # ¢, then nd* = Q, consists of atoms
of oy and

mANC)=nd"N%", and ©(4 N Cp) = n4d' N x",,.

Then, by Condition 2.1, p(n(4 N Cp| &) > 0 iff p(n(A N C)|x2.) > 0 and

‘u(n(A N Cixty)
Hr(A 0 Cp)Ix- o)
This clearly implies (10). |

1‘<s.

Now setw, = w, N P, N Q;, and
&= glw,={G =G nw, Geg’, v(G/G) > 0}.

It is clear from (10) that for G, Ge &and a set A = Q, of atoms of ¢

(11) ’v(A/G) - 1| < 2.
v(4/G)

Now let 4 be a set of atoms of ¢ such that W(4 N G/G) > 0 for all Ge . Let
0z be some measure-preserving mapping of (G,v/G) onto (4; = A N G,v/Ag)
and 0 = 0,_a mapping of (%, v/W,) onto (4 = A NW,, v/4) such that §/G = 0
for Ge g.

LeMMA 3.3. 0 is a 4e-measure preserving mapping. If ze w, then nz,
n(0z)ex” .. For all t = 0 dy(S'z,8'0z) < 3/n + r,, where dy is the metric in
W and r, = X2, B(i). (See the definition of f€ 1.)

Proor. The second assertion follows from the construction of the mapping
0. We have

I(t,z)—-1 o0

dy(5'2,5'02) < 3fn+ | X (f(¢'nz) - f($'n62)| < 3jn + X B(),
i=0 i=n

where I(t, z) is the number of times the trajectory S*(nz,0) hits X during time t.
To prove the first assertion, let v be the partition of A4 into atoms {Vg=G N4,
Ge g} and H = 4. We have

12) v(HJA) = fv _ V(H|V)dvy(V).

Let F be a set of atoms of v. Then
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WF|A) = f v(V5/G)dvy(G) /f V(V6/G)dvi(G).
Geg:GnF#¢ Geg
It follows from (11) that for G, G € g,
v(Vg/G)
——=.—1 ’ 2¢.
’v(Vg/G) =%
Therefore,
F|A)
13 MEAD | < 4.
(13) ’ WO~ F W) ’ ¢
Since v(H/V;) = v(0 ~'H/G), it follows from (12) and (13) that
I_X(_i@:- - 1] < 4.
v(0~1H|W)
This proves the lemma. |

The continuity of f easily implies the following.

LemMA 3.4, For any &> 0, there exist n >0 and a partition of W,
B, = {Bo,By,***, By}, such that v(By) < & and B;, i =1,--,b,, are n-cubes
in (W,v).

LemMA 3.5. There exists an ascending sequence of partitions y,; < y, < -
in (W,v) such that \/ -7, is the partition into points and for every i Z i,
we have y; = {T5,T},--,I}}, where T}, k = 1,--,1;, are i-cubes in (W,v).

PrOOF OF THEOREM 3.1. Set S' = § for t > 0; we claim that for any fixed
i = i, the partition y=%; of Lemma 3.5is VWB in (W,v,S). Our assertion will
then follow from Theorems A and B.

Set 0y = U, 0T It is clear that v(dy) = 0. Let O,(dy) = Ufi"f{;‘/H,k)S‘(ay),
Let ¢ >0 be given and suppose that w(Ox(dy)) < &* for K = K(e). Let
n = max(K(s), N(¢)) and let B = B, = {Bg,**, By,}, v(Bg) < ¢, be the partition
of Lemma 3.4. For each n-cube B}, j = 1, -+, b,, we consider B = BiNnP,NQ,
B= U}";IE}', vB)zZ1-(2t+ e

Since S is K-automorphism, there exists My = My(g) = i sup, . xf(x) such
that for all M’ = M = M,,¢-almost every atom Ae \/., S* and all B,
j=1,-,b, v(B}) > 0, we have
L CHEVRY

= < &
v(BY)

(14) |
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Let 0; be the 4¢ measure-preserving mapping of Lemma 3.3 of (B},v/B}) onto
d;=4n E}', v/4}). We define a mapping @ of (W, v) onto (4,v/4) by 6 = Hj/ﬁj-',
j =1,-,b,, with 6/W — B an arbitrary mapping onto 4~A4 where A=J"~, 4,.
It follows from (14) that @ is a ge& measure-preserving mapping, where
g = max (5, 2t + 1).

For m 2 1, consider the sequence of partitions {S™*y}7 in (W,v) with name-
function I(w) and {S""y[A}'{' in (4,v/A) with name-function m,(z). We claim
that 0 satisfies the conditions of Theorem C.

Since n > i, it follows that #I" consists of atoms of "  for each atom I"e S™*y,
k>0. Hence, by Lemma 3.3, the S ~*y name of a point w e B and the S ™%y name
of the point Ow e 4 can be different only if S*w € 0,(dy). By the choice of n, we
have v(0,(y)) < 2. Let N(w) denote the number of indices k, 0 < k < m, such
that S*w € 0,(0y). Then

{weB: 711 jgl e(m;(6w) — 1,(w)) > s}c{weﬁ: ﬁ’;i) >¢
~ 1 ™
= {weB. - JE}lrj(w) > a} = E,
where
o (1, Siw e 0,(y)
ri) lO, otherwise.

The expectation of this random variable satisfies the inequality Er(w)<e?, and by
Chebyshev’s inequality w(E,) < &. This implies (9), if we set E = E,, U (W-B),
wWE)<Q2t+2e 1

ReMARK. The proof remains valid almost without change if the integrable
function 0 < f* < fe Yis not bounded on X.

4.

In this section we do not suppose that f is constant on the atoms of o’

In order to carry our result over to this case, we need the following concept.
Let f.g eLi(X) and f=g. We shall say that f is homologous to g (f ~ g)
relative ¢ if there exists a measurable function u(x) on (X, 1) such that almost
everywhere f(x) = g(x) + u(x) — u(¢~"x) (see [5], [11]). For example, f(x)
and g(x) =f (¢ “*x) = ¢*f(x) are homologous, with u(x) = X%} ¢f(x). The
relation ~ is reflexive, symmetric and transitive.
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The proof of the following lemma may be found in Gurevic [5].

LEMMA 4.1. If f ~g, then the special flows (¢,f) and (¢,g) constructed
over (X, u) with the aid of the functions f and g are isomorphic.

LemMmA 4.2, (See also [11].) If the function 0 < f* < fe Y’ is bounded
on X, then there exists a function 0 < g* < ge ¥, homologous to f, which
is bounded and constant on the atoms of og.

ProoF. ForxeX,n=1,2,.-- and xex”,cal,, we set
5400 = [ | 5@ (2
x'l

where the integration is performed with respect to the measure p/xZ,. All the

functions f, are in ¥, bounded, constant on the atoms of a2, and f, = f* > 0,

n=1,2,--. Seth(x) =f(x) — f,-1(x). For all xe X, ]h,,(x)| =< 2f(n-—1).
Suppose that 2 X+, f(k —1) < f*/2 for m > 0. We have

as) 1) =1 + T

The series in (15) converges uniformly. Each function h; is constant on the atoms
of &, and the function ¢*h(x) = h(¢ ~*x)is constant on the atoms of ¢3¢ Consider

1) YO =fD+ T h).

The series in (16) converges uniformly and the function g’ is continuous, bounded
and constant on the atoms of aZ,,. By our choice of m, g’ = f*/2 = g* > 0.
We show that g'e 7. Let y,zex",, n = m. Since ¢'h; is constant on the atoms
of a2, ¢'h(y) = ¢*h(z) for i < nf2 and

g -g@|=| 2 (@r»)-¢r@)| <4 Z G = 7.
i=[n/2]+1 i=[n/2)
Since Xnf(n) < o, Xy, < oo and g'€ 7.
Consider
© i-1

7 u(x) = X X ¢*h(x).

i=m+1 k=0
Since X.,iB(i) < o, the series in (17) converges uniformly. It is readily seen
that f(x) = g'(x) + u(x) — ¢u(x), that is, f ~ g’. The function g = ¢"g’ is
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in 7, bounded, constant on atoms of «y, and g = g* > 0. Moreover, g ~ g’
andsog ~ f.
We obtain the following.

THEOREM 4.3. If Condition 2.1 holds in (X,u), 0 < f* < feY’, and for
fixed t, S* is a K-automorphism then S' is a B-shift.

THEOREM 4.4. Transitive Anosov flows of class C* with Gibbs measures
are B-flows.

THEOREM 4.5. If (X, u, @) is a Markov chain,0 < fe ¥’, and S'is a K-flow
then S' is a B-flow.
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