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We consider a special flow S t over a shift in the space of sequences (X, #) 

constructed using a continuous f with 

~, n '  sup I f ( x ) - f ( y ) J  < oo. 
n=0 x.r:x~=y~,lil<=n 

We formulate a condition for/~ such that the K-flow S t is a B-flow. 

l o  

A geometric idea of Ornstein and Weiss [8] turns out to be applicable to tran- 

sitive Anosov flows of  class C 2 on compact Riemannian manifolds, relative to a 

wide class of  K-measures which Sinai considered in E11] and called Gibbs measures 

(see also [3]). This class includes the so-called smooth measures, which induce 

conditional measures equivalent to normalized Riemannian volume on the 

elements of  a measurable partition consisting of subsets of contracting (or ex- 

panding) leaves. For geodesic flows on compact manifolds of negative curvature, 

these measures coincide with invariant Riemannian volume. Sinai's construction 

of Gibbs measures Ell]  made essential use of a special representation of an 

Anosov flow { T ' }  on M, obtained with the aid of a Markov partition (see I'10], 

[2], [9]). This partition determines a matrix YI = {n~j}, rr~j = 0, 1, of order r, 

with the property that for some s > 0 the elements of the matrix 1-I s are positive. 

Using the matrix 1I, one constructs a space X n  = X c {1,2, ..., r} z of sequences 

X to t o ,  , i ~--- x = { ~},=_ nx, x+, 1, with metric 

* A note on the paper Geodesic f lows are Bernoullian by D. Ornstein and B. Weiss. 
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- l i l  , - , ,, x i  = x i  
d(x ' ,  x") = ~, 2 e(xi, xi ), e(xi, x l )  = 

x; ~ x;'. 
X n is compact .  

In  X one can define the shift au tomorph i sm ~b: (~x)i  = x i_ 1. The Markov  

par t i t ion enables one to define: (i) a posit ive cont inuous funct ion f ( x )  on X 

satisfying a Holder  condi t ion;  (ii) a special flow S '  = ( ~ , f )  in the space 

W = ( X , f )  = {(x ,y) :  x E X, 0 < y < f ( x ) ,  ( x , f ( x ) )  = (~bx,0)} 

with the direct p roduc t  topology,  so that  for  t < infx ~ x f ( x )  

f (x ,  y + t), t < f ( x )  - y 

S ' (x ,  Y) = { [(dpx, t + y - f ( x ) ) ,  t > f ( x )  - y. 

S t is uniquely defined for  all  other t by the condi t ion that  it be a one-parameter  

g roup  of  t r ans format ions ;  (iii) a cont inuous  mapp ing  ~O: W ~ M  such that  

~9S t = Tt~k. I f  we now let v be an St- invariant  Borel measure  in W such that  

fails to be bijective on a set o f  v-measure zero, then the flows S t in (W, v) and T t 

in (M, ~b* v) are i somorphic  (for any Borel set A c M ,  ip * v(A) = v ( ~ -  1A)). 

This was the me thod  used by Sinai in l - l l ]  to construct  invar iant  Gibbs  K-  

measures  for  transit ive Anosov flows o f  class C 2, carrying out  the actual  construc-  

t ion  for  special  flows S t in W. Sinai 's  Gibbs  measure  v in W induces on X a 

~b-invariant Borel  K-measure  # (dv = (d# x dt) f - 1 ,  f = f x f ( x ) d # ) ,  possess- 

ing the proper ty :  

l im #(XxiXo,  X_ 1, . . . , x_ , )  = # ( x t i x o ,  X_x , . . . )  => a > 0, for  every (1) 
n'-'* O0 

sequence {xi} ~ oo" 

(2) Fo r  all  :~ {:~,} o oo, x = o = x,I i[ < = = { x , } - ~ o ,  ~zi = n ,  

and certain constants  C, x > 0, 0 < p < 1, we have 

(3) ] . ( x , / ~ )  1] < Cp "~. 
i,(x,/~) 

Let a denote  the par t i t ion  o f  X i n t o  sets x o = i ,  i = 1,2, ..., r, and ct~ = Vk=,~bt k~. 

By the construct ion of  the space X n  = X, we can define for  A e a and g, x a o J A  

a bijective mapp ing  q: ~ onto  x such that  x e ~ and t/(x) = z c x lie in the same 
oo 0 

a t o m  of  the par t i t ion  ~0,  that  is, {z~}_ o~ = ; and zi = x~, i > 0. I t  clearly follows 

f rom (3) that  if  g, x c A E ~~ then for  any measurable  C c 2, # (C  1 2) > 0 
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(4) I 11 < 
where ~(n) ~ 0 as n -~ oo. 

When ~ is a Markov partition for an Anosov diffeomorphism, the atoms of  ~o_ | 

are subsets of  contracting leaves, while the elements of ~ are subsets of  

expanding leaves (see [,10], [,9,1). Then the mapping r/ (sometimes called the 

canonical mapping)maps one contracting subset onto another via transversal 

intersection with an expanding subset. For  an algebraic automorphism of  a torus 

with Haar measure # and a geodesic flow on a manifold of negative curvature 

with invariant Riemannian volume, the mapping r/satisfies condition (4) (see [,1,1 ). 

The geometric idea of Ornstein and Weiss, applied to these cases [-81, is essen- 

tially based on condition (4). 

Let us say that a function f continuous on X belongs to class 2:(2") if, for 

a l l x ,  x ' e X ,  x~ = x~ for 1i1 < n, 

�9 

Our main result (Theorems 3.1, 4.3) is that if condition (4) holds in (X,#)  

(or even a weaker condition 2.1, see below, which does not require that X have 

a matrix stucture), 0 < f e  2:' and for fixed t, S t is a K-automorphism in (W,v), 

then S t is isomorphic to a B-shift. In particular, we obtain the following theorems. 

THEOREM 1.1 Transitive Anosov flows of class C 2 with Gibbs measures are 

B-flows. 

THEOREM 1.2. I f  (X ,# ,  dp) is a Markov chain, 0 < f e Y',  and for f ixed t, 

S t is a K-automorphism in (W,v), then S t is isomorphic to a B-shift. 

e 

Here we shall study condition (4). If  P is a property that holds for all atoms of 

a partition ~, with the possible exception of  a set of  atoms whose union has 

measure less than e, we shall say that P holds for z-almost every atom of  ~, or 

for e-almost every atom A of  ~. 

We now formulate a weaker version of  condition (4). Let (X, #) be a @invariant 

subset of  {I, 2 ,... r} z. 

CONDmON 2.1. For  any 8 > 0, there exists a set P of  atoms of  ~~ o, 

#(P) > 1 - e, a set Q of  atoms of  ~o, #(Q) > 1 - 5, and a number N = N(8) > O, 
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such that for all xON~aON, all ~,x e P  n x~ and any set A = Q of atoms of 

ao,  we have:/~(A 1 2) > 0 iff #(A [ x) > 0 and 

#(A/x)  I 

I f X = X n ,  t h e n A n ~ # ~ i f f A N ~ # ~ a n d A  A x = q ( A N Y , ) .  

Henceforth, the notation ~ s xON will imply that xOs is a set of atoms of ~o ~o. 

Moreover, it will be clear from the context whether a set C is to be considered as a 

set of atoms of some partition or as a subset of the space X. 

PROPOSITION 2.2. I f  dp is a K-automorphism in (X, li) and Condition 2.1 

holds, then a is a weak Bernoulli partition. 

a is said to be a weak Bernoulli partition if  for any e > 0 there exists 

no = no(e) > 0 such that for  all n' > n > no, all m > 0 and e-almost every 

atom B ~ a~ 

(5) ]~ ,, [ #(A/B) - ~(A) I < e. 
A ~ n  

PROOF. Let Condition 2.1 hold for e > 0, P, Q and N. Since 4~ is a K-auto- 

morphism and a~ is finite, there exists ko = ko(8) such that for all k'  > k _> ko, 

e-almost every atom A ~ aRk' and all x~ o E a-s ,  #(x~ > O, 

I #(x~ 1] < e. 
u(x-s) 

That is, 

(6) I #(A/x~ 11 < e. /~(A) 

Set A = A'  U A", A' = A n Q, A" = A n ~. Then by (6), 

(7) [#(A') --#(A'/x~ < 8#(A) + #(A") + #(A"/x ~ 

Further 

t~(A'/x~ = ~(a'/x~ n e)" #(_Olx%,,) + r176 n P).  r176 

#(A'/x~ n e) = [ o ~,(A'/~)d~,~o_,,~,,,(~). 
d ~ x  lvtaP 

By Condition 2.1, for any ~ x - N  n P ,  we have #(A'I~ ) > 0 iffp(A'ix~ > 0 

and 
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.(A'/x~ 1 t <e. - 

o Since #(P) > 1 - e  and .(Q) > 1 - e ,  there exists a set R of atoms of a-s, 

p(R) > I - 2e ~, such that for all X~ 

. (P/x  ~ > 1 - ~ r  and . (Q/x ~ > 1 --e �89 

Then, for $~xO_N n P, xONER, 

[v(A'/x~ - p(A'/:Z)[ < 2:p(A'/~) + ~*.(A'/x~ n V). 

It then follows from (7) that for ~ e S = R n P, .(S) > I - 3e ~ and ~ ~ x~ R, 

[.(A'/Yc)-p(A')] < 2e~v(A'/~) + e�89176 n P) + .(A") + e.(A) + .(a"/x~ 
This is true for all k'  > k > ko and e-almost every atom A E Uk k'. Hence, for 

~ S ,  

Y. ,1 .(A/~) - . (A)[ < 17e ~. 
A f :~k  k 

Since q~ is a K-automorphism, there exists mo = too(e) > 0 such that for all 

B E O : _ m , ,  m' = > m = > mo and e-almost every atom -m 

].(s/B) 1' 
.(s) ] < e. 

But .(A/B) = .(A/B n S) .(S/B) + .(A/B n S) .(S/B) and 

= Z.I,(s/B) f. 
A A ~Bc~S 

+ .(A).(S/B) - .(A) + .(A/B n S).(S/B)] 

=< .(s/B)|  X [.(A/~) - .(A)1] d.~s(~) 
.I ~ ~BoS  A eot~ r 

+ 8e �89 < 25e ~. 

This clearly implies (5), if we set n o = ko(~2/17) + rno(e2/8). | 

REMARK. The proof  remains valid without change if Condition 2.1 is 

weakened as follows: for any collection {Ai} of sets A~ ~ Q of  atoms of ~o 0~o 

A ~ n A j =  ~ , ( i ~ j ) ,  

(8) Z.I.(A,I~) - .(Ai/x)l < e. 

Since ~ is a generating partition, we obtain the following theorem from [7]. 
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THEOREM 2.3. I f  Condition (8) holds, the K-shift tip is Bernoullian. In 

particular, transitive Anosov diffeomorphisms are Bernoullian relative to 

Gibbs measures (see [4], [11]). 

. 

In this section we prove Theorem 3.1. 

THEOREM 3.1. I f  Condition 2.1 holds in (X,p),  0 < f *  < f ~ Y is bounded 

and constant on atoms of ct~ and for fixed t, S t is a K-automorphism in (W, v), 

then S t is a B-shift. 

Our proof will employ the concept of very weak Bernoulli (VWB) partitions, 

defined in [7], [8]. 

Let (W,B,v)be a measurable space, S an invertible measure-preserving trans- 

formation, and ~ a finite partition. The following two theorems may be found 

in [7], [6], ([8]. 

THEOREM A. I f  ~ is VWB then (W, V ~-oo SAY, v, S) is a B-shift. 

Here V~ Sn7 denotes the smallest a-algebra with respect to which all the 

SiV are measurable. 

THEOREM B. I f  A 1 ~ A 2 c_ ... is an increasing sequence of S-invariant 

a-algebras, VI~176 = B, and for each i (W, Ai, v,S ) is a B-shift, then (W,B, v,S) is 

a B-shift. 

In order to formulate sufficient conditions for a VWB partition, we need the 

following concepts. Let (X1, ml) and (X2, m2) be two measurable spaces. 

A mapping | XI ~ X2 is said to be e measure preserving if there is a set E1 c X1, 

ml(El)  < e, such that for all A ~ X 1 - E 1, ml(A ) > O, 

I m2(OA)/ml(A) -- l J < ~. 

Let {a,}]' be a sequence of partitions in X. Then the {ui}t~-name of x e X is the 

sequence I i li(x ) determined by x ~ All ), uf {A~O, a (i) A (1)~ ~ zx  2 , ' ' ' , t X a i  j ' .  

Let ~ be a finite partition in (W,B,v ,S)  and ~,~ = VT=pS*~,. We shall consider 

A E ~ as a measurable space with a-algebra B/A and normalized conditional 

measure viA,  and also the sequences of partitions {S-~,}~' in (W, B, v) with name- 

function l,(w) and {S-• ] A}'[' in (A, B IA, v I A) with name-function ms(y). Let e 

be defined on the integers by e(j) = 1 for j ~ 0 and e(0) = 0. 

The following theorem is proved in [8]. 
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THEOREM C. Suppose that for  any e > 0 there exists n o = no(e ) > 0 such 

that for  all n' >- n > no, ~-almost every atom A E ~ '  and any m > 1 one can 

construct an ~ measure-preserving-mapping O: (W,B,v)  onto (A,B] A,v] A) such 

that 

1 ~ e(l~(w) m~(Ow))~_e, w ~ W - E  
(9) m ,=~ 

KE) _-<e. 

Then ~ is VWB.  

Since f is constant on atoms of a~ there exists a partition ~ of W into atoms 

{S'x~, 0 ~_ y < f(x~~ x~~ ~ '} .  

Let x~.  e a t .  and 2/n < y + 1/n <= inf~ e~,~_f(x). Define an n-cube in W as a 
set 

y+ l/n 
wn = U StXn-'n �9 

t = y - l / n  

Let ~ be the partition of w, into sets {C t = Stx*_.| t ~ [ y - 1 / n ,  y +  1/n], 
SI lY+l/n q t v n  x*--oo c x~,} and O the partition of the same set into sets t~t=y_l/ ,~, .~_|  

X$~o = x_*,}. We write ~w, = S~+I/"x~_, u SY-~/"x*-,. It is convenient to in- 

troduce the projection n: W--. X, defined by n(w) = x for w = (x,y), 0 <= y <f (x ) .  

Now suppose that Condition 2.1 holds for t > 0, P , Q , N ( e ) >  0, and let 

n _> N(~). Set P. = ~b"P, Q. = dp"Q, P'., = Ux~z.  I~Jt=olsc=)ct~,,, ~, Q,  = U=Ea.Ut=oSx.S(~) , 
P and Q are, of course, treated here as subsets of X. It is clear that v(P') >_ 1 - z~ 

and v(Q',) > 1 - ze, where �9 = sup=ex f (x ) / f .  The set P~ consists of atoms of 

~*-~o, and since f is constant on atoms of ~o~176 follows that Q~, consists of atoms 

of ~. 

Let w. be some n-cube in (W,v) and g'  the set of all atoms G o f g ] w ,  such that 

G ~- P,~. Then Condition 2.1 implies the following. 

PROPOSITION 3.2. For any 8 > O, n > N(8), any set A = Q~ of atoms of 

and any G, G~# ' ,  we have: v(A[G ~) > 0 iff ~(al ~) > o, and 

0o) l'(a/~ iI<~ 
KA/G) 

PROOF. By the definition of v, 

w+' 1 K.4/r ~(r~(.4n C~)/~_~| nl2 
Ldy-I/n 

where ~_ | = ~ 0  and C~ ~ ~l G. 
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= r l  ~ t  

A similar expression is valid for G, x_ ~ = uG and Cg = ~ [ G. Now, if A t is a set 

of atoms Ce ~ A such that Cr n StxL, ~ ~ ,  then rcA' = Q, consists of atoms 

of a~ and 

n ( A N C ) = T c A  t A x _ c o  and r e (An  ) = h A  t n x _ c o .  

Then, by Condition 2.1, p(n(A ~ C~) ] 2~ oo) > 0 iff #(n(A n ~ )  [ x_ n co) > 0 and 

t~(~(A - '  -" I n Cr 1 < 5. 

#(u(A n C]')/~"_co) I 
This clearly implies (10). | 

Now set k.  = w. n P" o Q'. and 

~, = g / w .  = { C  = c n ~,., G e o ' ,  v ( G / 6 )  > 0}. 

It is clear from (10) that for d, G e g and a set A = Q" of  atoms of  

<1') i -'i < 
v(AId) 

Now let A be a set of  atoms of  ~ such that v(A ~ G/G) > 0 for all G E g. Let 

0~ be some measure-preserving mapping of (G, v/G) onto (A~ = A ~ G, vial)  

and 0 = 0~. a mapping of (~,, v/r?,) onto (A = A n ~,, v/.4) such that O/G -- Oa 

for G e g .  

LEMMA 3.3. 0 iS a 4~-measure preserving mapping. I f  z e #, then nz, 

rc(0z) ~x"_oo. For all t > 0 dw(Stz, StOz) <= 3In + r,, where dw is the metric in 

W and r n = Z~=,fl(/). (See the definition o f f  E if.) 

PROOF. The second assertion follows from the construction of  the mapping 

0a. We have 

l ( t , z ) -  1 I I 

dw(Stz, StOz) <= 3In + [ • (f(r  - f(dp'~zOz))[ <= 31n + fl(i), 
I i = O  I i f n  

where l(t, z) is the number of times the trajectory St(nz, 0) hits X during time t. 

To prove the first assertion, let v be the partition of  .~into atoms {V, = G n.~', 

G ~ g} and H c .~. We have 

(12) v(Hl.~) = .Iv, f(HIV)dv-a(V). 

Let F be a set of atoms of v. Then 
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: ~ ~ r,J (VG/G)dv~'(G)/fo ~ v(VJG)dv~,(G). 
It follows from (11) that for G, G~ r 

v(V~lG) 

Therefore, 

< 2e. 

v(F/~) I (13) v ( ~ - ~ )  11 <4~. 

Since v(H/V~) = v(0-1H/G), it follows from (12) and (13) that 

I 11 < 4~. v(0-1H/I~) 

This proves the lemma. | 

The continuity of  f easily implies the following. 

LEMMA 3.4. For any e > O, there exist n > 0 and a partition of Vr 

fin = {Bo, B1," ' ,Bb.} ,  such that v(Bo) <= e and Bi, i =  1, '" ,bn,  are n-cubes 

in (W, v). 

LEMMA 3.5. There exists an ascendin# sequence of partitions ~j < ~2 < "" 

in (W,r) such that V~'=~'i is the partition into points and for  every i >= i o 

we haoe r, {to, r , ,  .,rU, whereF~, k = 1 , . . . , l , , a re i - cubes in (W,v ) .  

PROOF Or TrIEOREM 3.1. Set S t = S for t > 0; we claim that for any fixed 

i = io the partition ~ = ~  of Lemma 3.5 is VWB in (W,v,S).  Our assertion will 

then follow from Theorems A and B. 
= I 1 3 1 k + r ~  SI[~.,'~ Set d~ U r ~ ~0F. It is clear that v(a~) = 0. Let O~(0y) = ut=-(3/k+,~) t rJ. 

Let e > 0 be given and suppose that v(O~(d~))< e2 for K = K(0 .  Let 

n > max(K(e),N(~)) and let # =/~,  = {Bg, . . . ,B~}, v(B~) < ~, be the partition 

of  Lemma 3.4. For each n-cube B j", j = 1,..., bn, we consider/;~. = B~ c3 P~ r3 Q: 

B = ' ,b. ~n v(B)  > t - (2x + 1)e. 
k . ) j  = 1 ~-'j, = 

Since S is K-automorphism, there exists Mo = Mo(~)> i supx~x f (x )  such 

that for all M'>= M > Mo, e-almost every atom A e VkU'uSky and all /~7, 

j = 1,. . . ,  bn, v(~.) > 0, we have 

~(~la) (14) ~ li<e. 



Vol. 17, 1974 ANOSOV FLOWS 389 

Let 0j be the 4e measure-preserving mapping of Lemma 3.3 of (B~, v / ~ )  onto 

( .~ = A (3 B],v/Xj). We define a mapping 0 of (W,v) onto (A,v/A) by 0 = Oj/B~, 
j = 1, ..., b,, with 0 / W - B  an arbitrary mapping onto A - A  where A=I.Jj=I.4j.~ bn 
It follows from (14) that 0 is a qe measure-preserving mapping, where 

q = max (5, 2z + 1). 

For m > 1, consider the sequence of partitions {S-k?}'~ in (W, v) with name- 

function lk(w) and {S-keIA)7 in (A, v/A) with name-function mk(z ). We claim 

that 0 satisfies the conditions of Theorem C. 

Since n > i, it follows that nF consists of atoms of cd oo for each atom F �9 S-k~, 

k>0.  Hence, by Lemma 3.3, the S-K? name of a point w � 9  the S-k~ name 

of the point Ow �9  can be different only if Skw �9 O,(~?). By the choice of n, we 

have v(O,(d?)) < ~2. Let N(w) denote the number of indices k, 0 -< k < m, such 

that SKw �9 O~(~y). Then 

{w�9  --1 ~ e(mj(Ow) - lj(w)) > 8}~{w�9 N(w), > ~} 
m j= 1 m 

= {w�9 1- ~ r j ( w ) > e , }  --- E m 
IT/ j=i 

where 

_ ~1, sSw �9 o . ( ~ )  

r j(w) - ~0, otherwise. 

The expectation of this random variable satisfies the inequality Erj(w)< 8 2, and by 

Chebyshev's inequality v(Em) < e. This implies (9), if we set E = E ,  U (W-B),  

v(E) < (2~ + 2)~. I 

REMARK. The proof remains valid almost without change if the integrable 

function 0 < f*  < f � 9  Yis not bounded on X. 

. 

In this section we do not suppose that f is constant on the atoms of o~. 

In order to carry our result over to this case, we need the following concept. 

Let f ,  g �9 L~(X) and f = ~. We shall say that f is homologous to g ( f  ,~ g) 

relative ~b if there exists a measurable function u(x) on (X,p) such that almost 

everywhere f ( x )  = g(x) + u(x) - u(dp-lx) (see [5], [11]). For example, f ( x )  
andg(x) =f(dp-kx) = d?kf(x) are homologous, with u(x) = ~,k-l~ =0 tb'f(x).~ The 
relation ,,~ is reflexive, symmetric and transitive. 
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The proof  of  the following lemma may be found in Gurevic [5]. 

LEMMA 4.1. I f  f ,,, g, then the special flows (cb,f) and (c~,g) constructed 

over (X, p) with the aid of the functions f and g are isomorphic. 

LEMMA 4.2. (See also [11].) I f  the function 0 < f*  <=f~ 1/" is bounded 

on X, then there exists a function 0 < g* <= g ~ Y, homologous to f,  which 

is bounded and constant on the atoms of ~ .  

PROOF. F o r  x ~ X ,  n = 1, 2 , . . .  a n d  x ~ x ~ ,  e ~_,, we set 

fn(x) = fx" f(z)dlzx"-"(z) 
- n  

where the integration is performed with respect to the measure ~/x~_,,. All the 

functions f ,  are in r ' ,  bounded, constant on the atoms of  a~_,, and f ,  > f *  > 0, 

n = 1, 2,. . . .  Set h~(x) = f n ( x ) - f , - l ( x ) .  For all x ~ X, 1 h.(x)l _< 1). 

Suppose that 2 ~~ 1 fl(k -1 )  < f*/2 for m > 0. We have 

~o 

(15) f (x)  = f , (x)  + Z hi(x). 
i = m + l  

The series in (15) converges uniformly. Each function h~ is constant on the atoms 

o f ~  and the function c~ih~(x) = h~(c~-ix) is constant on the atoms o f ~ !  Consider 

(16) g'(x) = y,(x) + ~ c~'h,(x). 
i = m + l  

The series in (16) converges uniformly and the function g'  is continuous, bounded 

and constant on the atoms of  ~ m .  By our choice of  m, g'  > f*/2 = g* > O. 

We show that g 'E  T. Let y, z ~ x"_,, n > m. Since ~b~hi is constant on the atoms 

of  0~g i, c~thi(y) = c~ihi(z) for i < n/2 and 

[g'(y) - g'(z)[ = I ~" (~b'h,(y) - ~'h,(z))[ < 4 ~ //(i) = r , .  
i = [n/2]  + 1 t • [n/2]  

Since Enfl(n) < 0% ~r~ < oo and g'  ~ T. 

Consider 

oo i - 1  

(t7) u(x)= E E Ch,(x). 
t f m + l  k = O  

Since ~ '=o  iB(i) < 0% the series in (17) converges uniformly. It is readily seen 

that f ( x ) =  g'(x)+ u ( x ) -  c~u(x), that is, f - - ,  g'. The function g = c]jmg ' is 
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in r ,  bounded ,  cons tan t  on a toms  o f  ~o ,  and  g > g* > 0. Moreover ,  g ~ g '  

and  so g ~ f .  

We  o b t a i n  the fo l lowing .  

THEOREM 4.3. I f  Condit ion 2.1 holds in (X ,  la), 0 < f *  <__f~ Y ' ,  and  f o r  

f i xed  t, S t is a K -au tomorph i sm  then S t is a B-shift .  

THEOREM 4.4. Trans i t ive  Anosov f lows  o f  class C 2 with Gibbs measures  

are B-flows. 

TrIEOREM 4.5. I f  (X,l~,c~) is a M a r k o v  chain, 0 < f E Y ' ,  and S t is a K- f low 

then S t is a B-flow. 
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